智能制造对流程工业的意义和前景

2022-03-17 09:00:30 江苏省企业技术改造协会 43

背景

流程工业智能制造是一种以实现对整个制造、生产过程的管理和决策,以及智能优化和智能自主控制为特征的制造模式。智能制造的目标是使企业的制造流程“绿色化”和低碳化,并提高生产效率。将操作者的知识工作变得自动化,将控制系统和制造过程转变为智能自主控制系统,使企业管理者和生产管理者的知识工作智能化。

图片关键词

架构

ERP 和MES转变为人机合作的智能管理决策系统,将企业原有的ERP、MES、PCS三层结构转变为人机合作的智能管理决策系统和智能自主控制系统两层结构,将整个制造和生产过程的决策、控制与运行管理转化为CPS,并将生产制造操作员以及知识工作者的知识工作变得自动化和智能化。CPS 中的知识工作者是计划者、管理者和决策者。

图片关键词

人机合作的智能管理决策系统主要由智能优化决策、虚拟制造过程、工况识别与自优化控制三个子系统组成。

该智能管理决策系统的预期功能如下:

(1)感知市场信息、生产情况和制造过程的实时运行状况;

(2)以企业高效化与绿色化为目标,实现企业综合生产指标、计划调度指标、制造生产全流程生产指标、运行指标、生产指标、控制指令的综合优化决策;

(3) 实现对决策过程动态性能的远程移动可视化监控;

(4)通过自学习和自优化决策,实现人与智能优化决策系统之间的协同,使决策者能在动态变化的环境中准确优化决策。

图片关键词

智能自主控制系统主要由三个子系统组成智能运行优化、高性能智能控制、运行状态识别和自优化控制。该智能自主控制系统的预期功能如下:

(1)智能感知生产条件的动态变化;

(2)以优化运行指标为目标,对控制系统的设定值进行自适应决策;

(3)智能跟踪控制系统设定值的变化具有高动态性能,将实际运行指标控制在目标值范围内;

(4)实现实时远程监控和移动监控,预测和排除异常运行工况,使系统安全、优化运行;

(5)配合构成整个生产过程的其他工业过程的智能自主控制系统,实现整个生产过程的全局优化。

科学挑战与关键技术

流程工业生产全流程的智能化对自动化科学技术中基于数学模型或因果数据的建模、控制和优化提出了挑战。工业人工智能和工业互联网为流程工业提供了实现整个生产过程智能化的新方法和新技术。

虽然工业人工智能的定义尚不明确且随着时间的推移而发生变化,但工业人工智能研究及其应用的核心目标是实现当前工业生产活动中知识工作的自动化和智能化,从而显著提高经济和社会效益。这些活动包括生产和过程设计、运行管理和决策过程,制造过程和运营管理控制——目前依赖于人类感知、认知、分析决策能力、经验和知识的活动。

工业人工智能主要是利用工业大数据,开发用于工况识别、预测以及决策的人工智能算法和人工智能系统;并设计用于智能决策和智能化管控系统的软件,以补充和提高知识工作者在生产和设计过程中的能力。此外,人工智能算法、运算能力和人机交互也是不容忽视的问题。

图片关键词

工业互联网的出现,大数据、CPS、互联网等信息技术的发展,以及对先进制造和智能制造的重大需求。2012年10 月,美国通用电气在题为“Industrial Internet: Pushingthe Boundaries of Minds and Machines”白皮书中提出了工业互联网的概念。2011 年1 月,德国工业科学研究联盟提出工业4.0 战略。2011 年11 月,工业4.0 战略被列入《2020 年高新科技战略》。近期,美国和德国都制定了结合人工智能技术发展工业互联网的战略。当前,全球新一轮科技革命和产业革命加速发展,工业互联网技术不断突破,为各国经济创新发展注入了新动能,也为促进全球产业融合发展提供了新机遇。中国高度重视工业互联网创新发展,愿同国际社会一道,持续提升工业互联网创新能力,推动工业化与信息化在更广范围、更深程度、更高水平上实现融合发展。这一声明指明了中国工业互联网高质量发展的方向。要使工业互联网成为推动我国制造业高质量发展的强大动力,开展工业互联网高质量发展的模式和路径研究至关重要。

图片关键词

结合我国流程工业发展现状,数字化、网络化、智能化需求以及工业人工智能和工业互联网的发展目标,我们提出需要解决以下科学问题:

(1)基于动态系统建模与深度学习相结合的复杂工况识别与反馈控制;

(2)基于机理分析与工业大数据分析相结合的动态特性、运行、决策知识挖掘;

(3)基于预测、反馈和强化学习相结合的人机协同优化决策;

(4)多冲突目标、多约束、多时间尺度的智能优化决策与控制一体化技术。

为了解决这些科学问题,有必要采用CPS 和会聚研究的思想。会聚研究是一种以问题驱动为特征的新的研究范式和思维方式。会聚研究解决的问题是具有挑战性的科学研究问题或涉及社会需求的重大挑战,需要跨学科的合作研究。为了解决这些复杂的问题,需要各学科进行交叉学习,以达到各学科共同创新的新框架。将科学的方法以及技术相融合是解决该难题的最佳策略。团队科学正在成为一种更典型的研究模式。

为此,我提出以下亟待解决的关键技术:

(1)复杂工业环境下运行工况的多尺度多源信息的智能感知与识别;

(2)复杂工业环境下基于5G 的多尺度多源信息快速可靠的传输技术;

(3)系统辨识与深度学习相结合的复杂工业系统智能建模、数字孪生与可视化技术;

(4)关键工艺参数和生产指标的预测与追溯;

(5)复杂工业系统的智能自主控制技术;

(6)人机合作的智能优化决策方法;

(7)智能优化决策与控制一体化技术;

(8)“端-边-云”协同实现工业人工智能算法的技术。

总结

为了实现流程工业的高端化、绿色化、智能化,需要将工业人工智能、工业互联网与流程工业领域知识深度融合,开发人工智能算法和人工智能自主系统,以补充和提升知识型工作者的能力。本文总结了现有流程工业整个生产过程的决策、控制和运行管理的不足,阐述了流程工业智能制造的含义,并提出了流程工业智能优化制造的愿景。结合我国流程工业的发展现状和数字化、网络化、智能化的需要,提出了流程工业智能制造面临的科学问题和关键技术。

025-8320 9516
电话咨询
邮件咨询
在线地图